Topic 5: Define, Evaluate, and Compare Functions

Term	Meaning
Function	
Domain	
Range	
Relation	
Independent	
Variable	
Dependent	
Variable	
Linear Function	
Qualitative Graph	
Function	
Interval	

Pre-Chapter Review

Finding Slope from a Table

Find the slope from the table: \quad Slope $=$ \qquad

x	y
-2	5
0	9
2	13
4	17

Copy the (x, y) next to the table from the video.

Slope also equals: Change in Change in

x	y
1	$\mathbf{8}$
-3	5
-7	$\mathbf{2}$
-11	$\mathbf{- 1}$

$$
\text { slope }=\frac{\text { change in } y}{\text { change in } x}
$$

x	y
0	-3
-2	0
-6	6
-8	9

$$
\text { slope }=\frac{\text { change in } y}{\text { change in } x}
$$

x	y
-3	$\mathbf{1 3}$
1	$\mathbf{1 1}$
9	$\mathbf{7}$
13	$\mathbf{5}$

Find slope from Graphs:
slope $=$ rate of change

Slope $=$ change in $y=$ change in $\mathbf{x}=$ \qquad

slope $=\frac{\text { rise }}{\text { run }}$
slope $=\frac{\text { change in } y}{\text { change in } x}$

Finding Slope from Two Points

$$
\text { slope }=\frac{\text { change in } y}{\text { change in } x}
$$

(Formula) Slope = \qquad Fill it in!

Find the slope of the line that passes between $(-3,-4)$ and $(5,-12)$

$$
\begin{gathered}
\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \\
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

Find the slope of the line that passes between $(-4,3)$ and $(-7,8)$

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Find the slope of the line that passes between $(-4,-2)$ and $(-6,-12)$

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

All three videos review how to find the slope of linear equations $-\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{b}$, where \boldsymbol{m} is slope and b is the y-intercept. Linear equations or functions make graphs that are lines. Look at the graphs in each example from these 3 videos. They are ALL lines.

Lesson 1: Understand Relations \& Functions

Goal: Identify whether a relation is a function Identify the domain and range of a function

A relation is a pairing of numbers in one set, called the domain, with numbers in another set, called the range. A relation is often represented as a set of ordered pairs (x, y). In this case, the domain is the set of x-values and the range is the set of y-values.

Function - a relation (set of ordered pairs) in which each element of the domain is paired with exactly one element of the range. In other words, there is NO REPEATING OF X VALUES IN A FUNCTION!
$\{(-2,0.5),(0,2.5),(4,6.5),(5,2.5)\}$
The domain is
The range is

Problem 1 Identifying Functions Using Mapping Diagrams

Identify the domain and range of each relation. Represent the relation with a mapping diagram. Is the relation a function?
($\{(-2,0.5),(0,2.5),(4,6.5),(5,2.5)\}$
The domain is $\{-2,0,4,5\}$.
The range is $\{0.5,2.5,6.5\}$.

B $\{(6,5),(4,3),(6,4),(5,8)\}$
The domain is $\{4,5,6\}$.
The range is $\{3,4,5,8\}$.

Got It? 1. Identify the domain and range of each relation. Represent the relation with a mapping diagram- Is the relation a function?
a. $\{(4.2,1.5),(5,2.2),(7,4.8),(4.2,0)\}$
b. $\{(-1,1),(-2,2),(4,-4),(7,-7)\}$

Problem 2 Identifying Functions Using the Vertical Line Test

Is the relation a function? Use the vertical line test.
$\Delta\{(-4,2),(-3,1),(0,-2),(-4,-1),(1,2)\}$
(B) $y=-x^{2}+3$

Try it: Are the graphs functions? Use the vertical line test to decide:

Extra Notes for in class previews:

A \qquad is any set of ordered pairs, and can be represented as a table or as a graph.

The \qquad of the relation is the set of x-coordinates.

The \qquad of the relation is the set of the y-coordinates.

A \qquad is a relation in which every member of the domain is paired with exactly one member of the range.

Express the relation $\{(-5,2),(3,-1),(6,2),(1,7)\}$ as a table and a graph. Then state the domain and range.

D:
R :

Function?

$$
\left\{\left(2 \frac{1}{2},-1 \frac{1}{2}\right),\left(2, \frac{1}{2}\right),\left(-1,2 \frac{1}{2}\right),\left(-1,-1 \frac{1}{2}\right)\right\}
$$

D:

R :

Function?

Independent Variable:

Dependent Variable:

The domain is the \qquad variable b/c it can be any value. The range is the variable because it \qquad .

Lesson 2: Analyze Functions

Goal: Determine if a relation is a linear function
Identify functions by their equations, tables, and graphs

Key Concept:

Identify Linear and Nonlinear Functions

In a previous lesson, you learned that linear functions have graphs that are straight lines. This is because the rate of change between any two data points is a constant. Nonlinear functions are functions whose rates of change are not constant. Therefore, their graphs are not straight lines.

Draw the examples from the video here of NON-LINEAR FUNCTIONS:

Determine whether each table represents a linear or nonlinear function. Explain.

Got It? Do this problem to find out.

c. Tickets to the school dance cost $\$ 5$ per student. Are the ticket sales a linear function of the number of

Number of Tickets Sold	1	2	3
Ticket Sales	$\$ 5$	$\$ 10$	$\$ 15$

4. A square has a side length of s inches. The area of the square is a function of the side length. Does this situation represent a linear or nonlinear function? Explain.

DRAW THE TABLE AND GRAPH AND WRITE THE NOTES HERE:

Extra notes for class preview:

Use the \qquad of the graph of the function to determine if it is linear.

A nonlinear function has a graph that is not a straight line.
Does the table represent a linear or nonlinear function? Explain.
4.

As x increases by $3, y$ decreases by 8 . The rate of change is constant. So, the function is linear.

Does the table or graph represent a linear or nonlinear function? Explain.

x	y
0	25
7	20
14	15
21	10

x	y
2	8
4	4
6	0
8	-4

Check the \qquad of \qquad

Does the equation represent a linear or nonlinear function? Explain.
4. $y=x+5$
5. $y=\frac{4 x}{3}$
6. $y=1-x^{2}$

Lesson 3: Construct Functions to Model Linear Relationships

Goal: Write an equation in the form $y=m x+b$ to describe a linear function

B. How can you tell that the relationship is a linear function from the table? How can you tell from the graph?

Focus on math practices
 Generalize How can the different representations help you determine properties of functions?

The \qquad of the line is the \qquad in \qquad divided by the \qquad
in \qquad which is
. (FILL IN THE

BLANKS FROM THE SENTENCE UNDER STEP 1.)

Try It!

How will the height of the ramp change if the plan shows that for ewery 1 irches of height, the triangle should hwe a bues that is is inches long? Graph the function. The tiope of the function thown in the graph in \square The equation af ite function is $y=\square$ v. If the base length is 110 indhes, then the height of the ramp will be inches

Corvince Mel Ixplain why the initial value and the f-interopt are equivalent.

EXAMPLE 2

The cost to manulactur 5 toy 1417.50 , the cose to manulincture iotoys is tio construct alineur function in
 betwen the number of tow produced and the coit of producing tham.
STEF If Detemine the constant rate of change.

$$
\frac{30-175}{10-5}=\frac{125}{5}-\frac{25}{1} \quad \text { Thecominant inte }
$$

$$
30=2.540 \text { b } \quad 5=\Delta \quad \text { The initial whut, or yintercept is } 5
$$

The linear function thet medela thin relationnhip is $y=2.5 x+5$,

Try It!

 Gorntruct in functon in the form $y=$ mus +6 to repretent the amount of dog food used, H_{1} alter w werls.

EXAMPLE 3 - Interpret a Function from a Graph

The graph shows the relationship of the height of a burning candle over time. What function represents the relationship?

The function $y=-1 x+10$ represents the relationship.

Try It!

The graph trow the relationthp between the rumber of parges printed loy a printer and the sarm up time before each printing. What furction in the form $y=m=b$ reperewts the relathonship?

KEY CONCEPT

 twe quarititios, and y.

Slope of convars rate of change

$$
y-m x+b
$$

$$
y \text {-ruterctpt or initial ualue }
$$

2. Pake Sense and Permevere Tonya is looking Bt a graph thest shows a line drawn between two points with a thope of -5 . Sne of the points is mwodged and she cannof read it. The points as
 must the walue of is bet' ilxplain.
3. Resaroning what is the initial walue of all linear functions that thow a proportional redationship?
4. The data in the table below represent a linear relationship. Fill in the mising data.

4	10	20		40
F	10	14	20	\square

6. What lis an equation that representis the linear function described by the data in ltem 5 ?

Extra Class Practice for Previews:

To write a linear function in slope intercept form, you need to identify the:

An airplane at 30,000 feet begins its descent. The plane descends 500 feet per minute. Identify the rate of change and initial value in this situation. Then, write an equation in the form of $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ to model the height of the plane.

To find an initial value/
put the equation into Slope Intercept form and solve for the \qquad

Lesson 4: Intervals of Increase and Decrease

Goal: describe the behavior of a function in different intervals

Intervals of Increase and Decrease

Objective

Students will be able to:
\checkmark describe the behavior of a function in different intervals.

Essential Understanding

The relationship between two quantities on a graph can be represented in a qualitative graph that shows the behavior of the function in different intervals.

Solve \& Discuss It!

Martin will ride his bike from his house to his aunt's house. He has two different routes he can take. One route goes up and down a hill. The other route avoids the hill by going around the edge of the hill. How do you think the routes will differ? What do you think about the relationship of speed and time?

Be sure to draw the graphs and take notes from the video.

Be sure to draw the graphs and take notes from the video.

The graph shows the behavior of a ball that a soccer player kicks to a teammate. Describe how the height of the ball and time are related in each interval.

Determine whether the function is increasing, decreasing, or constant in each interval.

Try It!

The graph shows the behavior of Skylla skateboarding at a skateboard park. In which interval is the function increasing, decreasing, and constant?

EXTRA CLASS NOTES FOR PREVIEW:

A
is a graph used to represent situations that may not have numerical values or graphs in which numerical values are not included.
\qquad the period of time between two events or points in time.

Functions can be \qquad or \qquad based on the \qquad .

Sketch a linear function that is increasing

Judith's bike ride

Sketch a function that decreases then increases

What interval is Judith's distance decreasing?

What interval is Judith's distance increasing?

What interval is Judith's distance constant?

Lesson 5: SKetch Functions from Descriptions

Goal: Draw a sketch of a graph for a function that has been described
Analyze and interpret the sketch of a graph of a function

> The Environment Club is learning about oll consumption and energy conservation around the worid. Jack says that the oil consumption In the United States has dropped a lot. Ashley says that the oil consumpion In China is the biggest problem facing the world environment.

A. Do you agree or disagree with Jack's statement? Construct an argument based on the graph to support your position.

Write down whether to agree or disagree with Jack and Ashley.

How does the sketch of a graph of a function help describe its behavior?

Write down the answer to this question.

Sketch the Graph of a Linear Function

What does the graph of the function look like?
Step 1: Identify the two variables

Input wariable: t (time)
Output undible e
(boygen level in the tank)

Step 2: Analyze the relationship between the two variables.

Write down the analysis from the video:

Step 3: Sketch and label a graph that shows the behavior of the function. When the dive begins, the oxygen tank is fuil.

The weight of the water exerts pressure on a diver. At a depth of 10 feet, the water pressure is 19.1 pounds per square inch (psi) and at a depth of 14 feet, the water pressure is 20.9 psi. Complete the statements, then sketch the qualitative graph of this function.

The input, or x-variable, is

Danika sketched the relationship between altitude and time for one of her ski runs. Describe the behavior of the function in each interval.

Danika is on the chair lift going up to the top of the ski run.

STEP 1 Identify the two variables in the relationship.

Output variable: nemmenner

STEP 2: Analyze the relationship between time and height.

When Jose first throws the javelin, it increases in height. After it reaches its highest point, its height decreases until it hits the ground.

Jackson rides his bike from his home for 30 minutes at a fast pace. He stops to rest for 20 minutes, and then continues riding in the same direction at a slower pace for 30 more minutes. Sketch a graph of the relationship of Jackson's distance from home over time.

Time (min)

You can sketch a graph of a function to describe its behavior. When sketching a function, follow these steps:

1. Identify the two variables (input, output) that have a relationship.
2. Analyze the situation. Look for key words that indicate that the function is increasing, decreasing, or constant.
3. Sketch the graph.

How do you know which variable goes with which axis when you graph?
Be sure to answer this question here in your notes:
4. A clatis plants a tree. Sketch the grapih of the height of the tnect grer time.

ain Identity the twe wariablem
c. Sketich the graph.

5. An airplane takes

15 minutes to reach its cruising altiturde.
The plane cruives at that altitucle for 90 minutes, and then descends for 20 minutes before it lands. Skefich the graph of the height of the plane oner time.

Time (min)

EXTRA EXAMPLES FOR CLASS PREVIEW:

The graph below displays the temperature of a cup of hot chocolate. Describe the change in the temperature over time.

A lion is resting when it sees another lion and races after it, picking up speed as it runs. Sketch a graph to represent the situation.

Emmy got a new puppy last year. The graph shows the puppy's weight over time. When the puppy was \qquad months old he weighed 15 lbs . Over the next 3 months he grew from 15 to \qquad lbs. Then he grew at a rate of \qquad pounds per month for 2 months. After that...

